跳房子,也叫跳飞机,是一种世界性的儿童游戏,也是中国民间传统的体育游戏之一。
跳房子的游戏规则如下:
在地面上确定一个起点,然后在起点右侧画 n 个格子,这些格子都在同一条直线上。每个格子内有一个数字(整数),表示到达这个
格子能得到的分数。玩家第一次从起点开始向右跳,跳到起点右侧的一个格子内。第二次再从当前位置继续向右跳,依此类推。规则规定:
玩家每次都必须跳到当前位置右侧的一个格子内。玩家可以在任意时刻结束游戏,获得的分数为曾经到达过的格子中的数字之和。
现在小 R 研发了一款弹跳机器人来参加这个游戏。但是这个机器人有一个非常严重的缺陷,它每次向右弹跳的距离只能为固定的 d 。小 R 希望改进他的机器人,如果他花 g 个金币改进他的机器人,那么他的机器人灵活性就能增加 g ,但是需要注意的是,每次弹跳的距离至少为 1 。具体而言,当 g<d时,他的机器人每次可以选择向右弹跳的距离为 d-g,d-g+1,d-g+2,…, d+g-2, d+g-1 , d+g ;否则(当 g≥d 时),他的机器人每次可以选择向右弹跳的距离为 1 , 2 , 3 ,…, d+g-2, d+g-1, d+g。
现在小 R 希望获得至少 k 分,请问他至少要花多少金币来改造他的机器人。
第一行三个正整数 n , d , k ,分别表示格子的数目,改进前机器人弹跳的固定距离,以及希望至少获得的分数。相邻两个数 之间用一个空格隔开。
接下来 n 行,每行两个整数 x_i, s_i ,分别表示起点到第 i 个格子的距离以及第 i 个格子的分数。两个数之间用一个空格隔开。保证 x_i 按递增顺序输入。
共一行,一个整数,表示至少要花多少金币来改造他的机器人。若无论如何他都无法获得至少 k 分,输出 -1 。
7 4 10
2 6
5 -3
10 3
11 -3
13 1
17 6
20 2
2
数据规模与约定
本题共 10 组测试数据,每组数据 10 分。
对于全部的数据满足1 ≤ n ≤ 500000, 1 ≤ d ≤2000, 1 ≤ x_i, k ≤ 10^9, |s_i| < 10^5。
对于第 1, 2组测试数据, n ≤ 10;
对于第3, 4, 5组测试数据, n ≤ 500
对于第6, 7, 8组测试数据, d = 1